
Learning Vector Policy Fields for Continuous Control

Tanmay Shankar
Robotics Institute
Carnegie Mellon

tshankar@andrew.cmu.edu

Abstract

We introduce Deep Vector Policy Fields (DVPF), a framework to extend the
differentiable planners introduced in VIN (Tamar et al. [2016]) and RLN (Shankar
et al. [2016]) to the domain of continuous control, by representing policies as
continuous vector fields. DVPF addresses learning continuous control policies from
expert demonstrations; learning MDP transition dynamics as convolutional filters;
and deep inverse reinforcement learning in partially observable environments. We
apply our framework to the problem of quadrotor navigation, and establish the
potential of our framework to reconstruct expert demonstrations in simulation and
on real quadrotors.

1 Motivation and Related Work

Recent advances in the learning community have addressed the problem of learning robot control,
often from high-dimensional sensor inputs. While a majority of these approaches have operated in
discrete action spaces, few among them, such as Lillicrap et al. [2015], Heess et al. [2015], Schulman
et al. [2015], Gu et al. [2016] have targeted continuous control. Such approaches construct monotlithic
deep neural networks in order to reconcile with high-dimensional sensor inputs and generalize across
scenarios. As a result, these approaches often ignore the underlying structure of planning, and are
difficult to interpret.

An orthogonal approach has been to connect deep neural networks with reinforcement learning (RL)
in a natural manner, as in the Value Iteration Networks (VIN) from Tamar et al. [2016], and the 3
reinforcement learning networks (RLN) from Shankar et al. [2016]. This new class of algorithms
combine the structure inherent to classical planning frameworks Markov Decision Processes (MDPs),
with thse potential for invariance and generalization afforded by deep learning (DL) approaches.

In particular, Tamar et al. [2016] and Shankar et al. [2016] demonstrated the equivalence between the
Bellman updates in Value Iteration, and the architectural elements of recurrent convolutional neural
networks (RCNNs). This equivalence is achieved by representing forward-rollouts with the transition
dynamics of an MDP using convolutional filters, and the choice of optimal actions as an adapted
‘max-pooling’ across actions. The resulting networks, VIN and RLN, use backpropagation to learn
transition models and reward functions associated with the underlying MDP in an end-to-end fashion.

Tamar et al. [2016] and Shankar et al. [2016] thus introduced the paradigm of differentiable planning,
which preserves the structure of classical planning in a learnable manner. This upcoming paradigm
has afforded new insights on traditional planning, as evident in a number of recent papers. Karkus
et al. [2017], like Shankar et al. [2016], address planning under partial observability, and strive to
generalize such planning to new environments. Gupta et al. [2017] introduce the concept of cognitive
mapping, and jointly learn to navigate and map environments in a latent space. Finally, Niu et al.
[2017] extend the VIN to generalized graph convolutions, allowing its application to non-lattice
structured data.

10703 Class Project (2016).

Despite the wide variety of problems and simulation environments that [Niu et al., 2017, Karkus
et al., 2017, Tamar et al., 2016, Shankar et al., 2016, Gupta et al., 2017] are applied to, the discrete
convolutions and finite number of convolutional “action” filters in RLN and VIN restrict their
application to discrete state and action spaces respectively. However, a number of problems where
these frameworks could prove to be powerful do not adhere to such discrete settings. Consider
for instance the robot planning problem, where continuous state and action spaces are frequently
encountered. Naively discretizing the action space may lead to discontinuous and jerky trajectories,
or radically different behaviors from those expected; operating over the original continuous action
space makes optimization over even a single action non-trivial.

In this paper, we introduce Deep Vector Policy Fields (DVPF), to extend to the scope VIN [Tamar
et al., 2016] and RLN [Shankar et al., 2016] continuous domains. DVPF learns control policies in
continuous state and action spaces, directly from expert demonstrations. We apply DVPF to the
problem of quadrotor navigation in a continuous 4 dimensional space (3 spatial dimensions and yaw),
an instance of the robot planning problem. DVPF selects continuous domain actions by representing
the learnt policy as a continuous vector field in this 4D space.

At the heart of DVPF are the Belief Propagation RCNN (BP RCNN) and QMDP RCNN introduced
by Shankar et al. [2016]. The BP RCNN implements Bayesian belief prediction differentiably, by
representing it as a convolution. Backpropagation in the BP RCNN learns an estimate of the transition
dynamics (as convolutional filters). Backpropagation in the QMDP RCNN learns a reward function
that a set of provided expert demonstrations implicitly optimize, as a form of imitation learning. The
QMDP RCNN then chooses optimal actions given a belief of state from the BP RCNN. We direct
readers to [Shankar et al., 2016] for an in-depth explanation of the BP RCNN and QMDP RCNN.

We adapt the BP RCNN and QMDP RCNN to operate over continuous state spaces and output contin-
uous domain actions, by probabilistically interpreting our chosen discrete state-action representation.
We adapt the BP RCNN to learn the transition dynamics of the underlying MDP, despite the prescence
of non-discrete actions. This enables us to quantify the quadrotor’s ability to achieving a commanded
velocity; as a error-measure in the controller. Finally, we extend the QMDP RCNN to learn reward
functions conditioned on sensor observations directly from the provided continuous demonstrations.
This powerful improvement gives DVPF the potential to generalize to unseen environments, as a form
of deep inverse reinforcement learning [Wulfmeier et al., 2015, 2016] under partial observability.
Together, these contributions allow us to learn continuous vector policy fields.

We evaluate the ability of DVPF to reconstruct expert demonstrations in a learning from demonstration
setting. We utilize data collected both in simulation and from a real quadrotor, and show that DVPF
is able to outperform traditional methods employing discretization of the space. Finally, we show
that DVPF demonstrates potential to generalize its trajectories to unseen environments, by learning
appropriate parametrizations of its reward function.

2 Method
Consider the problem of quadrotor navigation. We consider the state s of the quadrotor as the 3-
dimensional position x, y, z ∈ R3, along with yaw orientation ψ ∈ SO1. At any time point t, we have
state st ∈ S, where state space S is R3 × SO1. We further consider the actions of the quadrotor to be
specified by the velocities in this space, thus the action at at time t, may be described by the velocities
commanded to the quadrotor, (vx, vy, vz, vψ). Thus given a set of continuous 4-dimensional expert
trajectory demonstrations, {st, at, st+1...}, where st, at ∈ R3 × SO1 ∀ t, we would like to learn the
transition dynamics and the reward function of the underlying MDP. The BP RCNN and the QMDP
RCNN introduced by Shankar et al. [2016] afford us the machinery to do so.

State-Action representation in DVPF: Reconciling with the continuous-discrete gap.
To learn in the discrete setting inherent to the BP RCNN and the QMDP RCNN, we first construct a
probabilistic interpretation of interpolation, that allows us to reconcile with the continuous-discrete
gap. Consider a discrete representation of our state space S, consisting of X × Y × Z ×Ψ discrete
lattice points ŝi in the 4D space. We use multilinear interpolation to interpolate these continuous
states into this discrete state space. Thus a continuous state, st, may be expressed as st =

∑2d

i=1 αiŝti,
where d = 4 is the dimensionality of our space, αi’s represent the coefficients of the discrete lattice
points at that time step (ŝti). We obtain these coefficients αi via standard multilinear interpolation in
4D. Note that {ŝti} ⊂ {ŝi}.

2

Figure 1: Multi-Action Stream Network Architecture of the Belief Propagation RCNN. The BPRCNN
propagates beliefs forward in time using Bayesian Filtering, and minimizes the mean square error
between the ground truth belief (in red), and the predicted belief (in green), by backpropagation.

We represent our action space as the span of basis vectors in R3×SO1, i.e. ±x,±y,±z,±ψ, denoted
by êj ∀ j = 1, 2, ...8. Velocities at in R3 × SO1 may be represented as a linear combination of basis
vectors êj , with coefficients βj . Thus at =

∑
j βj êj ; the non-zero βj’s define the 4D orthant in

which action at lies. Coefficients βj are obtained as βj = at.êj/||at||1; as a result
∑
j βj = 1.

Note that in both VIN [Tamar et al., 2016] and RLN [Shankar et al., 2016], a single discrete action is
taken at any given timepoint. By allowing a soft assignment of coefficients βj instead (analogous
to the soft assignment of αi’s), we allow DVPF to explicitly consider (and execute) actions that are
continuous in direction. Key to DVPF is this notion of assigning such a weighting, or membership of a
continuous variable (st or at), to a set of discrete points or basis vectors (ŝi or êi); these memberships
may be loosely interpreted as the probability associated with that discrete state ŝi or basis vector
êj , conditioned on the given continuous state st or action at. Formally, we may express this as
αi ≡ p(ŝi|st), and βj ≡ p(êj |at).

In reality, we do not directly have access to the continuous state st, but to an observation ot from
which we infer a belief distribution over states b(ŝt). Motivated by the probabilistic interpretation
of interpolation, we may construct this belief distribution over discrete states, b(ŝi) from these
memberships αi’s, observing that b(ŝi) = p(ŝi|st) ≡ αi. This probabilistic interpretation is made
further apparent by observing that st = E[ŝi] =

∑
ŝi
b(ŝi)ŝi, which is analogous to the interpolated

form, st =
∑
i αiŝti. An identical interpretation may be made considering the interpolation of

actions, i.e. at = E[êj] =
∑
j p(êj |at)êj ≡

∑
j βj êj .

Belief Propagation in DVPF: Learning the Transition Dynamics
As emphasized above, the ‘expert’ demonstrations afford us observations ot, rather than state st.
Given a demonstration {ot, at, ot+1, at+1...}, it is necessary to infer and propagate beliefs over the
state of the agent (in our case, the quadrotor). The machinery of the BPRCNN allows us propagate
such beliefs of state, and hence learn transition dynamics associated with the underlying MDP.

Given a belief b(ŝt) at time t, a particular choice of action, at and an observation ot, we may
propagate this belief forward in time via Bayesian Filtering. Thus the belief at time t+ 1, b(ŝt+1)
may be expressed as b(ŝt+1) = η O(st+1, ot+1)

∑
s T (st, at, st+1)b(ŝt); where, O(st+1, ot+1) is

the observation model, corresponding to the probability p(st+1|ot+1); T (st, at, st+1) represents the
transition probabilities p(st+1|st, at); η is the normalization factor.

The vanilla Bayes Filters uses a single action, at, to propagate beliefs. By representing continuous
actions as linear combinations of a discrete action space, DVPF propagates the beliefs of state with
multiple discrete actions êj simultaneously. We thus replace transition probabilities p(ŝt+1|ŝt, at)
with

∑
j p(ŝt+1|ŝt, êj)p(êj |at). Recalling p(êj |at) ≡ βj , we have

∑
j p(ŝt+1|ŝt, êjp(êj |at) =∑

j βjT (ŝ, êj , ŝ
′). Thus belief propagation in DVPF can be represented as a weighted sum of the

beliefs propagated by each action, weighted by coefficients βj , as depicted in equation 1. Formally,
the prediction and update steps of the multi-action Bayes filter are as follows:

b(ŝt+1) =
∑
j

βj T (ŝ, êj , ŝ
′) ∗ b(ŝt) (1)

3

Figure 2: Network architecture for Deep Vector Policy Fields. The network chooses near-optimal
continuous domain actions given a belief of state (from the BP RCNNN). Backpropagation through
the network learns a reward that can reconstruct expert trajectories on which it is trained.

b(ŝt+1) = η O(ŝt+1, ot+1)� b(ŝt+1) (2)

The intuition behind equation 1 is to predict future belief based on the relative likelihoods of executing
each of the discrete actions involved. The BPRCNN may thus be represented as a generic multi-stream
architecture, where each stream corresponds to a discrete action, as reflected in Figure 1.

Note that while Figure 1 depicts the state space and filters in 3D, the transition probabilities
T (st, at, st+1) are actually a set of 4D convolutional filters, of size 3× 3× 3× 3, with one kernel
for each of the 8 discrete actions. The circular nature of the yaw dimension may be elegantly handled
by implementing the convolution along the yaw dimension as a circular convolution. We consider a
4D Gaussian kernel as the observation model; the observation ot+1 is the mean of the Gaussian, and
has a fixed Σ as its positive definite covariance matrix, thus p(st+1|ot+1) = N (ot+1,Σ).

In order to learn the transition dynamics associated with the MDP (and correspondingly the error
model of the quadrotor’s ability to attain a certain velocity), we follow the training regime followed
by Shankar et al. [2016]. We minimize the squared loss between the predicted belief b(ŝ′i), and
the ground truth belief b(s′i)truth, i.e. Lt =

∑
ŝi

(b(ŝ′i) − b(s′i)truth)2. We use stochastic gradient
descent, with teacher-forcing during training, which serves to decouple training timepoints, and
prevents uncertainty estimates from collapsing. The ground truth belief is constructed using solely
the mean of the observation, ot; the transition kernels are initialized to random values.

Choosing Continuous Domain Actions in DVPF
Making an optimal choice of action in partially observable settings amounts to solving a POMDP,
which quickly becomes intractable in continuous spaces. DVPF reconciles with this complexity
by invoking the QMDP approximation and approximate value iteration. Given an estimate of
the optimal Q values constructed from approximate value iteration, the QMDP approximation
considers that the optimal action, a∗, maximizes the expected Q value, given the current belief
of state b(ŝ). Mathematically, we have a∗ = arg maxaQ(b(ŝ), a), where belief-space Q values
Q(b(ŝ), â) = Eb(ŝ)Q(ŝ, â) =

∑
ŝ∈S b(ŝ)Q(ŝ, â).

In order to extend DVPF to continuous domain actions, we treat the output of the final softmax
activation layer of our network, yt, as the probabilities of each discrete action, p(êj |at). Formally,
we have yt = eQ(b(ŝ),êj)/

∑
êk
eQ(b(ŝ),êk). Revisiting the equivalence established between p(êj |at) and

βj , our network outputs coefficients βj of discrete actions êj , thus specifying a continuous direction
in the 4D space we consider. We may thus retrieve the (near) optimal continuous action at every
discrete ŝi in the state space, as π(ŝi) =

∑
j

eQ(b(ŝ),êj)∑
êk
eQ(b(ŝ),êk) êj . Note that we may retrieve this action

for a continuous state s as well, by constructing belief b(s) from coefficients αi ≡ p(ŝi|s). This

4

Algorithm 1 Inverse Reinforcement Learning via Backpropagation

1: procedure TRAINING DVPF ON EXPERT DEMONSTRATIONS
2: Initialize R(ŝ, â), D ← Expert Demonstrations
3: for i ∈ {1, 2, ..., Ndemo} do
4: ξ = {(o(i)1 , a

(i)
1 , o

(i)
2 , a

(i)
2 ...o

(i)
T , a

(i)
T)}

5: for t ∈ {1, 2, ..., T} do
6: β ← Coefficients(at)
7: Belief Update: Forward Pass of BP RCNN
8: b(ŝt+1)←

∑|A|
j=1 βj T (s, aj , s

′) ∗ b(ŝt)
9: b(ŝt+1)← η O(st+1, at, ot+1)� b(ŝt+1)

10: QMDP Update: Forward Pass of QMDP RCNN
11: Q(b(ŝ), â)←

∑
ŝ∈S b(ŝ)Q(ŝ, â).

12: yt ← eQ(b(ŝ),â)∑
â′ eQ(b(ŝ),â′)

13: Reward Update: Backward Pass of QMDP RCNN
14: Lt ← −

∑
j βj log y

(j)
t

15: R(ŝ, â)← R(ŝ, â)− α ∂Lt

∂R(ŝ,â)

16: θR ← θR − α ∂Lt

∂θR

17: Value Iteration Update: Forward Pass of VI RCNN
18: Q(ŝ, â)← R(ŝ, â) + γT (ŝ, â, ŝ′) ∗ V (ŝ′)

19: Return R(ŝ, â)

provides us a continuous policy, in the form of a vector field defined over the 4D space. We call this
field a vector policy field.

Deep Inverse Reinforcement Learning: Backpropagation in the QMDP-RCNN
By combining the planning embedded in forward passes of the VIN [Tamar et al., 2016] and the VI
RCNN [Shankar et al., 2016] with our method of constructing continuous vector policy fields from
Q-value estimates, we derive a method to learn reward functions from the expert demonstrations
provided. In order to reconstruct the expert demonstrations provided, our objective is to learn a
reward function that induces a policy whose actions match those observed in the demonstrations.

Our approach is a form of deep inverse reinforcement learning, applied to the learning from demon-
stration problem. We achieve this objective by maximizing the conditional log-likelihood of the
actions selected in the demonstrations, given the current belief of state b(ŝ), with respect to some
parametrization of the reward function. This is equivalent to training the modified QMDP RCNN to
minimize the cross-entropy loss (alternately, the KL Divergence) between a target action distribution,
constructed from the demonstrations, and the network’s predicted actions.

DVPF maintains the target action distribution for continuous domain actions, by virtue of the soft
assignment of coefficients βj . Thus given a demonstration {ot, at, ot+1, at+1...}, we may compute
the set of coefficients βj ∀j, for each action at, as βj = at.êj/||at||1. By treating these βj’s as
p(êj |at) ∀ j, we construct such a target action distribution. The network’s predicted actions are
retrieved from the final softmax activation layer, yt, as described in the previous subsection. The use
of cross entropy (or KL Divergence) as a measure of how much y(j)t differs from βj is motivated by
noting that

∑
j βj =

∑
j y

(j)
t = 1. Thus we minimize the cross entropy loss, Lt = −

∑
j βj log y

(j)
t ,

using backpropagation through the QMDP RCNN.

However, naively maximizing this log-likelihood for the given beliefs does not generalize to unseen
states. In order to propagate learnt rewards to portions of the state space that have not been
encountered, DVPF updates Q value estimates by running forward passes of the VI RCNN from
Shankar et al. [2016], using the learnt transition dynamics, and the current estimate of the reward
function. We note that these forward passes are analogous to solving an MDP, a common step in
traditional IRL algorithms.

Further generalization across environments may be achieved by conditioning the reward on sensor
observations, as observed in [Wulfmeier et al., 2016, 2015]. We thus provide a 3D sensor input to
DVPF, in the form of a RGB pointcloud. This is treated as input to a fully convolutional reward

5

Figure 3: (Left) The Lumemier Danaus quadrotor with which real quadrotor data was collected.
(Centre) Sample simulation environment in which we collect quadrotor trajectories, observe the
various obstacles, and the red sphere goal location. (Right) VICON arena in which we collect real
quadrotor trajectories.

Table 1: Evaluation of DVPF’s ability to learn transition dynamics: Cosine similarity values between
ground truth and expected velocities learnt under the transition dynamics, for the 3 spatial dimensions.

Experimental
Domain Control Noise Actions Selected Across all actions

+x −x +y −y +z −z
Simulated

Trajectories
No noise 0.9322 0.9243 0.9073 0.8918 0.9057 0.9440 0.9174

Artificial Noise 0.8917 0.8327 0.8465 0.8809 0.8427 0.9251 0.8699

Real Quadrotor
Trajectories

No Fans 0.9272 0.9350 0.9693 0.9612 0.7977 0.9734 0.9273

With Fans 0.9083 0.9225 0.9822 0.9787 0.7103 0.9152 0.9029

network, which outputs reward values used in the VI RCNN. The reward function is hence no longer
tabular, but is a highly non-linear function of features of this input pointcloud. The fully differentiable
nature of DVPF (and the underlying QMDP RCNN) implies no additional changes need be made to
the architecture to train the reward network 1.

The corresponding architecture is presented in Figure 2. The architecture depicted in Figure 2
resembles the original QMDP RCNN, but is implemented in 4 dimensions (3 spatial dimensions and
yaw) for generality. The algorithm for training the QMDP RCNN is presented in algorithm 1. We
note that the transition dynamics parameters in the BP RCNN and the VI RCNN blocks are frozen
during training. Additionally, rather than running full forward passes of value iteration at every time
step, we emperically found that using delayed feedback, i.e. running single passes of step 18 after
training on a single trajectory prevents initial trajectories from dominating the training.

3 Experiments and Results
In order to quantify the performance of our framework, we collect a series of quadrotor trajectories in
simulation and from a real quadrotor. We first describe the environments used and data collected,
followed by a description of our experiments, and finally our results.

Simulated Trajectories: We use the publicly available simulator, Hector Quadrotor [Meyer et al.,
2012], to validate DVPF in simulation. Hector quadrotor is built on the Gazebo simulator; this
allows us to also simulate an external world and provide simulated sensor inputs to our network.
We construct a set of simulated environments in which we collect trajectories; these environments
consists of a series of Gazebo shapes (such as cylinders, cuboids, etc.) with different textures (wood,
brick, etc.), populated in random locations. A sample environment is depicted in Figure 3 (Centre).

We collect a total of 30 trajectories in these environments, where an expert user pilots the quadrotor
through these random obstacles to navigate to the red sphere. The trajectories range from 300 to 1200
timesteps long. We inject small control noise to the executed velocity in a subset of these trajectories,
to observe how well DVPF is able to learn transition dynamics in the presence of such noise. We also
simulate a Kinect sensor in a third party perspective, faced towards the obstacles and the quadrotor in
these environments. The RGB pointcloud provided by this Kinect is voxelized, as in [Maturana and
Scherer, 2015], and fed into DVPF as an input to the reward network stream at the top of the DVPF
architecture.

1We note that experiments with the reward network stream (conditioning on sensor inputs) are carried out in
the simulation domain, while experiments with real quadrotor trajectories are carried out in the tabular setting.
This choice is motivated purely by hardware limitations.

6

Quadrotor Trajectories: We utilize data collected from a Lumenier Danaus, a medium-sized quadro-
tor aerial robot, shown in Figure 3. A total of 10 horizontal and vertical circular trajectories were
collected, ranging from 2500 to 15000 time steps long. The quadrotor uses a cascaded proportional-
derivative (PD) control scheme to track a reference trajectory (in position and velocity). We utilize
state estimates from an indoor Vicon motion capture system at 100 Hz. We executed a subset of these
trajectories in the presence of significant wind disturbances coming from 8 fans positioned around
the outside of the Vicon arena. For our actions, we record the commanded velocities transmitted to
the quadrotor, rather than the velocities it executes.

Learning Transition Dynamics: Velocity error models
The BP RCNN embedded in DVPF learns transition dynamics, and hence provides us an estimate of
the error of the quadrotor in achieving a certain commanded velocity. To evaluate the learnt transition
dynamics, we compute the similarity betwee the expected velocity under the learnt transition model,
qt, and the ground truth velocities executed, vt. In the absence of a ground truth transition model
for the real quadrotor, the similarity serves as an evaluation metric for learnt transition models.
Formally the similarity is c = vt.qt/||vt||2||qt||2, where qt is computed as Eŝ′,êj [T (ŝ, êj , ŝ

′)|ŝ = ŝi] =∑
ŝ′
−→
(ŝ′)

∑
êj
p(ŝ′|ŝ, êj)p(êj |vt).

The average similarities computed across trajectories under various conditions are presented in Table
1. Note that the similarities with ground truth actions are, on average, higher in the trajectories
without fans as compared to those with, due to the increased control noise experienced with fans.
The overall high degree of similarity indicates our framework is able to learn models useful for
planning, even in continuous domains. By quantifying the deviation between expected and ground
truth velocities, DVPF learns policies that account for the presence of disturbances.

Table 2: Average deviation and maximum acceleration of reconstructed trajectories learnt from
data collected from the real quadrotor. Deviation and accelerations are presented in normalized
coordinates.

Experimental
Domain

Control
Noise

Deep Vector Policy Fields Vanilla QMDP RCNN (discrete actions)

Trajectory Deviation Max acceleration Trajectory Deviation Max acceleration

Real Quadrotor
Trajectories

No Fans 0.0440 0.0319 0.2375 0.1828

With Fans 0.0826 0.0591 0.3590 0.2301

Learning vector policy fields from reward functions.
Quadrotor Trajectories: We evaluate the ability of DVPF to learn continuous domain policies to
reconstruct the provided demonstrations, on a real quadrotor platform and in simulation. We train our
framework on trajectories of similar shapes (for example, on horizontal circular motions, or vertical
circular motions). We learn a reward function by the variant of deep inverse reinforcement learning
specified in algorithm 1. After running the VI RCNN forward for several steps to propagate this
reward throughout the space, we finally extract a vector policy field as earlier specified.

We then follow this policy by performing rollouts from various initialization states. In order to
observe how this compares to the expert trajectory, we compute the deviation from the original
trajectory (as the average L2 distance between the trajectories normalized by the size of the state
space), when initialized in the vicinity of the original starting point. As noted in Table 2, DVPF is
able to reconstruct trajectories more adeptly than the vanilla QMDP RCNN, achieving significantly
lower average deviation. Naive discretization often cannot capture small motions and subtleties of
the original trajectories. Further, the discretization of the action space causes large accelerations
(presented in normalized coordinates in Table 2) in the reconstructed trajectories, which is mitigated
in the case of DVPF’s continuous actions.

Upon executing this learnt policy, we observe it brings the quadrotor close to the height of the
original demonstrated circle, executes a single circular motion, and then descends as observed in the
demonstration. This shows the ability of the QMDP RCNN to reconstruct demonstrated trajectories
to an appreciable extent; we note the overall shape, extent, and form of the trajectory is preserved
very well. A video of the quadrotor running this policy may be found at https://goo.gl/S4oCBo.

We visualize the learnt policy for this horizontal circular trajectory as a 3D vector field (yaw is
encoded as color for clarity), in Figure 4. Towards the edges of the field, and in the region of the

7

https://goo.gl/S4oCBo

Table 3: Average distance to goal and success rate of DVPF in learning goal-directed policies across
environments, when rewards are conditioned on input pointclouds. Compared against the vanilla
QMDP RCNN, operating with discrete states and actions and tabular rewards.
Experimental

Domain
Environment

Type
Deep Vector Policy Fields Vanilla QMDP RCNN (discrete actions)

Distance from goal Percentage Success Distance from goal Percentage Success

Simulated
Trajectories

Training 0.081 73.28 % 0.142 53.13 %

Novel 0.196 42.59 % 0.772 13.34 %

Figure 4: We display the Vector Policy Field in 3D (Left); the arrows at any point depict the velocity
policy commanded for each state. The color of the vector depicts the commanded yaw. This vector
field was generated by training on a horizontal circular behavior, as evident by the strong velocity
vector in a circle. The trajectory may be thought of as a streamline in this vector field. The figure on
the right displays shows a slice of the continuous vector policy field at constant depth; depicted over
the value function.

demonstration the policy field commands actions that induce circular trajectories as flow lines. We
extract a constant-depth slice of this policy, and display it in Figure 4 to the right. This is displayed
at the height of the original trajectory. The continuous field lines are clearly visible, the policy
commands actions continuous in both direction and magnitude.

We observe that in regions close to the original trajetory, the model learns with high confidence the
actions that ought to be taken (i.e. along the circle). In unencountered regions of the space, the policy
acts as an attractor towards the region where the original demonstration was enacted.

Simulated Trajectories: To test the capacity of DVPF to generalize across different environments,
we initialize the policy in a new environment, and compute the average distance achieved from the
desired goal location. We also compute the success rate of coming within a certain threshold of this
goal location (roughly 0.1 times the state space size). We present the results from DVPF and the
vanilla QMDP RCNN in Table 3. The vanilla QMDP RCNN fails to generalize, due to its tabular
rewards. By virtue of conditioning the reward on the input pointcloud, we observe DVPF is able to
achieve some level of success in moving towards the goal location in new environments. We note,
however, that there is a large scope for improvement in the ability of DVPF to generalize. DVPF is
also able to achieve a smaller distance to goal in the training environments.

4 Conclusion & Future Work
In this paper, we introdued Deep Vector Policy Fields, a framework for learning continuous control
policies from demonstrations. By learning estimates of transition dynamics, DVPF is able to quantify
and account for disturbances while planning, in the form of control noise or external disturbances.
As demonstrated in simulation and on a quadrotor platform, DVPF is capable to reconstructing
trajectories to an appreciable extent.

We emphasize that DVPF preserves the structure of planning in a learnable manner; it is this end-to-
end differentiable representation of planning that allows us to extend DVPF to learn parametrized
reward functions. This step affords DVPF the potential to generalize demonstrations to new environ-
ments without the need for handcrafted features.

8

Interesting directions of future research include extending such end-to-end planning to non-lattice
like structures, and moving into the realm of manipulation. We also intend to explore replacing the
3rd person perspective pointclouds with 1st person sensor input. An additional avenue of interest is
providing spatial memory to DVPF, to learn rewards over entire mapped pointclouds, rather than the
current field of view.

References
Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning with

model-based acceleration. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 2829–2838, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
http://proceedings.mlr.press/v48/gu16.html.

S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik. Cognitive Mapping and Planning for
Visual Navigation. ArXiv e-prints, February 2017.

Nicolas Heess, Greg Wayne, David Silver, Timothy P. Lillicrap, Yuval Tassa, and Tom Erez. Learning
continuous control policies by stochastic value gradients. CoRR, abs/1510.09142, 2015. URL
http://arxiv.org/abs/1510.09142.

Peter Karkus, David Hsu, and Wee Sun Lee. Qmdp-net: Deep learning for planning under partial
observability. arXiv preprint arXiv:1703.06692, 2017.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. CoRR,
abs/1509.02971, 2015. URL http://arxiv.org/abs/1509.02971.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
Pittsburgh, PA, September 2015.

Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar von Stryk.
Comprehensive simulation of quadrotor uavs using ros and gazebo. In 3rd Int. Conf. on Simulation,
Modeling and Programming for Autonomous Robots (SIMPAR), page to appear, 2012.

S. Niu, S. Chen, H. Guo, C. Targonski, M. C. Smith, and J. Kovačević. Generalized Value Iteration
Networks: Life Beyond Lattices. ArXiv e-prints, June 2017.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. CoRR, abs/1506.02438,
2015. URL http://arxiv.org/abs/1506.02438.

Tanmay Shankar, Santosha K Dwivedy, and Prithwijit Guha. Reinforcement learning via recurrent
convolutional neural networks. In Pattern Recognition (ICPR), 2016 23rd International Conference
on, pages 2592–2597. IEEE, 2016.

Aviv Tamar, YI WU, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems 29, pages 2154–2162. Curran Associates, Inc., 2016. URL
http://papers.nips.cc/paper/6046-value-iteration-networks.pdf.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Deep inverse reinforcement learning. CoRR,
abs/1507.04888, 2015. URL http://arxiv.org/abs/1507.04888.

Markus Wulfmeier, Dominic Zeng Wang, and Ingmar Posner. Watch this: Scalable cost-function
learning for path planning in urban environments. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2016, Daejeon, South Korea, October 9-14, 2016, pages
2089–2095, 2016. doi: 10.1109/IROS.2016.7759328. URL https://doi.org/10.1109/IROS.
2016.7759328.

9

http://proceedings.mlr.press/v48/gu16.html
http://arxiv.org/abs/1510.09142
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1506.02438
http://papers.nips.cc/paper/6046-value-iteration-networks.pdf
http://arxiv.org/abs/1507.04888
https://doi.org/10.1109/IROS.2016.7759328
https://doi.org/10.1109/IROS.2016.7759328

	Motivation and Related Work
	Method
	Experiments and Results
	Conclusion & Future Work

